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 Abstract— This paper introduces the flower pollination algorithm (FPA) as an optimization technique suitable for 

adaptive beamforming of phased array antennas. The FPA is a new nature-inspired evolutionary computation algorithm 

that is based on pollinating behaviour of flowering plants. Unlike the other nature-inspired algorithms, the FPA has fewer 

tuning parameters to fit into different optimization problems. The FPA is used to compute the complex beamforming 

weights of the phased array antenna. In order to exhibit the robustness of the new technique, the FPA has been applied to 

a uniform linear array antenna with different array sizes. The results reveal that the FPA leads to the optimum Wiener 

weights in each array size with less number of iterations compared with two other evolutionary optimization algorithms 

namely, particle swarm optimization and cuckoo search.  
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I. INTRODUCTION 

Adaptive beamforming of phased array antennas has 

been used extensively in modern radar and 

communication systems. By computing the excitation 

weights through a real-time optimization process, the 

adaptive beamforming technique has the ability to: 1) 

steer the main beam towards the desired signal or signal-

of-interest (SOI) and 2) put nulls towards the direction 

of the interferers or signals-not-of-interest (SNOIs).   

The nature-inspired evolutionary optimization 

algorithms such as genetic algorithm (GA), particle 

swarm optimization (PSO), and cuckoo search (CS) are 

capable of performing better and more flexible solutions 

than the classical optimization methods. In particular, 

the PSO algorithm has been applied to a variety of 

electromagnetic problems including beamforming [1] 

and antenna array synthesis [2]. It was shown in [3] that 

the PSO algorithm can outperform GA and other 

conventional algorithms for many optimization 

problems.  

The CS algorithm which is based on the lifestyle of 

cuckoos was developed by Yang and Deb [4]; it is based 

on the obligate blood parasitic behaviour of some 

cuckoo species in combination with the Lévy flight 

behaviour of some birds. The CS algorithm has been 

applied to the optimization of antenna arrays [5] and 

antenna array synthesis [6]. In [4], simulations were 

carried out to compare the performance of the CS 

algorithm with the PSO and GA on various benchmark 

test functions, and it was found that the CS is more 

efficient in finding the global optima with higher success 

rate than both the PSO and the GA. 

On the other hand, the flower pollination algorithm 

(proposed by Yang in 2012) [7] is a new population-

based intelligent optimization algorithm simulating the 

flower pollination behaviour. By using a set of 

benchmark functions, FPA has proved to outperform 
* Corresponding author can be contacted via the journal website. 
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both the GA and the PSO in obtaining better results and 

fast convergence rate [7]. 

In this paper, we show that the optimum Wiener 

weights of the phased-array antenna can be obtained by 

using the FPA. In particular, by minimizing a cost 

function representing the mean square error (MSE) 

between the weighted array output and a reference 

signal which is similar to the desired signal or highly 

correlated with it. In order to validate the performance 

of the FPA as an adaptive beamformer, it is applied on 

a uniform linear array (ULA) antenna with variable 

number of elements. Simulation results show that, 

unlike PSO, the FPA and CS converge to the exact 

Wiener weights in all configurations of The ULA. 

Moreover, the FPA has a faster convergence rate than 

both the PSO and CS. 

II. FLOWER POLLINATION ALGORITHM (FPA) 

FPA is the latest nature-inspired algorithm proposed 

by Yang in 2012 [7] inspired by the fertilization 

(pollination) process of flowers. The main purpose of a 

flower is ultimately reproduction via pollination. Flower 

pollination is typically associated with the transfer of 

pollen, and such transfer is often linked with pollinators 

such as insects, birds, bats, and other animals.  

Pollination can be achieved by self-pollination or 

cross-pollination. Cross-pollination, or allogamy, means 

pollination can occur from pollen of a flower of different 

plant, while self-pollination is the fertilization of one 

flower, such as peach flowers, from pollen of the same 

flower or different flowers of the same plant, which 

often occurs when there is no reliable pollinator 

available. 

 Biotic, cross-pollination may occur at long distance, 

and the pollinators such as bees, bats, birds, and flies can 

fly a long distance, thus they can considered as the 

global pollination. In addition, bees and birds may 

behave as Lévy flight behaviour [8], with jump or fly 

distance steps obey a Lévy distribution. Furthermore, 

flower constancy can be used an increment step using 

the similarity or difference of two flowers. 

In [7], the above characteristics of pollination 

process, flower constancy, and pollinator behaviour are 

idealized in the following four rules: 

1) Biotic and cross-pollination are considered as global 

pollination process with pollen-carrying pollinators 

performing Lévy flights. 

2) Abiotic and self-pollination are considered as local 

pollination. 

3) Flower constancy can be considered as the 

reproduction probability is proportional to the 

similarity of two flowers involved. 

4) Local pollination and global pollination are 

controlled by a switch probability p Є [0, 1]. 

Due to the physical proximity and other factors such 

as wind, local pollination can have a significant fraction 

p in the overall pollination activities. In the global 

pollination step, flower pollens are carried by pollinators 

such as insects, and pollens can travel over a long 

distance. This ensures the pollination and reproduction 

of the most fittest, and thus we represent the most fittest 

as g*. The first rule can then be formulated as: 

                  𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝐿(𝐠∗ − 𝒙𝑖
𝑡)                           (1) 

where 𝒙𝑖
𝑡 is the solution vector (pollen) i at iteration t, 

g* is the current best solution, and L is the strength of 

the pollination which is a step size randomly drawn from 

Lévy distribution. We draw L > 0 from a Lévy 

distribution: 

   𝐿~
𝛽𝛤(𝛽) sin(

𝜋𝛽

2
)

𝜋

1

𝑠1+𝛽  ,   (s ≫ 𝑠0 > 0)          (2) 

where Γ(𝛽) is the standard gamma function, and this 

distribution is valid for large steps s > 0. In most cases, 

𝛽 = 1.5. 

The local pollination (Rule 2) can be represented as: 

               𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝛾(𝒙𝑗
𝑡 − 𝒙𝑘

𝑡 )                      (3) 

where 𝒙𝑗
𝑡 and 𝒙𝑘

𝑡  are pollens from different flowers of 

the same plant species. The parameter γ is drawn from 

uniform distribution in the range from 0 to 1. 

The FPA optimization algorithm is summarized by 

the pseudo code of Figure 1.  

III. WIENER SOLUTION 

Assume an M-element ULA that receives a SOI, 

s(k), arriving from angle θ0 and N SNOIs, in(k), arriving 

from angles θn ,(n = 1, …, N) (see Figure 2). The 

parameter k denotes the kth time sample, each element is 

considered to be an isotropic source, while all the 

arriving signals are monochromatic with N + 1 ≤ M. The 

received signal, xm(k), at the input of every mth element 

(m = 1, …, M) includes additive, zero mean, white 

Gaussian noise, nm(k), with variance σ2. Thus, the input 

vector is: 

𝐱(𝑘) = 𝐚0𝑠(𝑘) + [𝐚1 𝐚2 … 𝐚𝑁][𝑖1(𝑘) 𝑖2(𝑘) … 𝑖𝑁(𝑘)]𝑇 

                              + 𝐧(𝑘)                                                    (4) 

where 𝐚𝑛 = [1   𝑒𝑗
2𝜋

𝜆
𝑞 sin 𝜃𝑛 …  𝑒𝑗(𝑀−1)

2𝜋

𝜆
𝑞 sin 𝜃𝑛]𝑇  (𝑛 =

0,1, … , 𝑁) is the array steering vector of θn, n(k) is the 

vector of the M  uncorrelated noise signals, nm(k), λ is 

the wavelength, and q is the spacing between adjacent 

elements of the ULA. Finally, the superscript T denotes 

the transpose operation. The array output is given by 

                                   𝐲(𝑘) = 𝐰𝐻𝐱(𝑘)                           (5) 

where w = [w1 w2 … wM]T is the vector of beamformer 

weights and the superscript H denotes the Hermitian 

transpose operation. Referring to Figure 2, the signal 

d(k) is the reference signal and ε(k) is an error signal 

such that 𝜀(𝑘) = 𝑑(𝑘) − 𝐰𝐻𝐱(𝑘). For the sake of 
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simplification, we will suppress the time dependence 

notation k. Squaring the error, we get 

            |𝜀|2 = |𝑑|2 − 2𝑑𝐰𝐻𝐱 + 𝐰𝐻𝐱𝐱𝐻𝐰                (6) 

Taking the expected value of both sides and 

simplifying the expression, we get the mean square error 

(MSE) as follows  

            𝐸[|𝜀|2] = 𝐸[|𝑑|2] − 2𝐰𝐻𝐫 + 𝐰𝐻𝐑𝑥𝑥𝐰          (7) 

where 

                                  𝐫 = 𝐸[𝑑∗. 𝐱]                                 (8) 

and 𝐑𝑥𝑥 = 𝐸[𝐱𝐱𝐻] is the signal correlation matrix. The 

symbol * denotes the complex conjugate. It should be 

noted that the cost function Eq. (7) is a quadratic 

function of w in the M-dimensional space. We can find 

the minimum of Eq. (7) by taking the gradient with 

respect to w and equating it to zero; thus the Wiener-

Hopf equation is given as 

                   ∇w(𝐸[|𝜀|2]) = 2𝐑𝑥𝑥𝐰 − 2𝐫 = 0             (9) 

The optimum Wiener solution, 𝐰𝑊𝑖𝑒𝑛𝑒𝑟 = 𝐑𝑥𝑥
−1𝐫. 

If we allow the reference signal d to be equal to the 

desired signal s, and if s is uncorrelated with all 

interferers, then we may simplify the correlation r. 

Using Eqs. (4) and (8), the simplified correlation  𝐫 =
𝐸[𝑠∗. 𝐱] = 𝑆. 𝐚0, where 𝑆 = 𝐸[|𝑠|2] is the mean power 

of the SOI. The optimum Wiener weights in this case 

                             𝐰𝑊𝑖𝑒𝑛𝑒𝑟 = 𝑆𝐑𝑥𝑥
−1𝐚0                     (10) 

IV. NUMERICAL RESULTS 

The PSO, CS, and the FPA algorithms were applied 

on a ULA with variable array size 4 ≤ M ≤ 32 elements 

and a uniform step of four elements. The population size 

for the three algorithms is fixed at 25, so that the number 

of cost function evaluations becomes directly 

proportional to the number of iterations. The switch 

probability p of FPA in Figure 1 is fixed at 0.8.  

The ULA receives a SOI arriving from θ0 = 20° and 

two SNOIs arriving from θ1 = −20° and θ2 = 40°. The 

signal-to-noise ratio (SNR) is assumed to be 30 dB and 

q = 0.5λ. 

The three algorithms were used to minimize the 

same cost function given in Eq. (7). The best obtainable 

minimum fmin for each algorithm is shown in Table 1 

along with the number of iterations and the error for 

each array size M, the error in Table 1 is defined as 

‖𝐰𝑊𝑖𝑒𝑛𝑒𝑟 − 𝐰𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚‖, where 𝐰𝑊𝑖𝑒𝑛𝑒𝑟 is the exact 

Objective min or max f(w), w = (w1, w2, …, wD) 

Initialize a population of n flowers/pollens with random solutions 

Find the best solution g* in the initial population 

Define a switch probability p ∊ [0, 1] 

while (t < MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand < p, 

Draw a (D-dimensional) step vector L which obeys a Lévy distribution 

Global pollination via 𝐰𝑖
𝑡+1 = 𝐰𝑖

𝑡 + 𝐿(𝐠∗ − 𝐰𝑖
𝑡) 

else 

Draw 𝛾 from a uniform distribution in [0, 1] 

Randomly choose j and k among all solutions 

Do local pollination via 𝐰𝑖
𝑡+1 = 𝐰𝑖

𝑡 + 𝛾(𝐰𝑗
𝑡 − 𝐰𝑘

𝑡 ) 

end if 

Evaluate new solutions 

If new solutions are better, update them in the population 

end for 

Find the current best solution g*  

end while 

Output the best solution found 
 

Figure 1. FPA pseudo code. 

 

Figure 2. Adaptive beamformer for phased array antenna system. 
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weight vector in Eq. (10) and 𝐰𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 is the optimum 

weight vector generated from each algorithm. From 

Table 1, we can see that the PSO converges to the exact 

Wiener weights for M = 4, 8, and 12 elements only, 

besides  it has the slowest convergence among the three 

algorithms for all cases of M. On the other hand, both 

the CS and the FPA converge to  the  exact  weights  for 

Table 1. Simulation Results for The ULA with Variable Array Size 

M 

fmin (best) Error Number of iterations 

PSO CS or FPA PSO 

CS 

or 

FPA 

PSO CS FPA 

4 3.7495e-04 3.7495e-04 0 0 27503 1200 1455 

8 1.2978e-04 1.2978e-04 0 0 85000 8000 6704 

12 8.4331e-05 8.4331e-05 0 0 374000 431000 59400 

16 6.3974e-05 6.3893e-05 0.0090 0 2240000 1638000 158776 

20 2.9960e-04 5.0035e-05 0.4995 0 735000 4229000 244840 

24 3.3176e-04 4.2008e-05 0.5382 0 394000 10199000 266638 

28 3.4147e-04 3.5849e-05 0.5529 0 512000 16923000 320195 

32 1.5869e-04 3.1296e-05 0.3569 0 432000 52364000 388051 

                                         (c)                                                                                                                  (d) 

                                          (a)                                                                                                                 (b) 

Figure 3. Optimal radiation patterns for SOI at 20° and two SNOIs at −20° and 40°. M equals (a) 8, (b) 16, (c) 24, and (d) 32 elements. 

 



Journal of Machine Intelligence 2 (1): 1-5, 2017  

 Journal of Machine Intelligence 2 (2): 1-5, 2017 | https://lsp.institute 

all values of M with the FPA has a faster convergence 

rate than the CS. The radiation patterns for three 

algorithms are shown in Figure 3 along with the Wiener, 

ideal, pattern for the three cases of M = 8, 16,  24, and 

32 elements. 

V. CONCLUSION 

A new technique based on the FPA is introduced for 

phased array antennas Beamforming which steer the 

main lobe towards the SOI and form nulls towards 

SNOIs adaptively. The FPA adaptive beamformer leads 

to the optimum Wiener weights for the ULA with 

variable array size with faster convergence rate than the 

PSO and the CS algorithms. By using Graphics 

Processing Units (GPUs) [9], the computational 

complexity can be overcome and then the FPA can be 

used by adaptive beamforming networks in real-time 

applications. Therefore, the FPA seems to be quite 

promising in the smart antenna technology. In future 

work, the FPA will be applied to more complex fitness 

functions in order not only to control the pattern nulls 

but also to achieve specific values of sidelobe level.  
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